University of Wisconsin-Whitewater

Curriculum Proposal Form #3

New Course

Effective Term:
 FORMDROPDOWN

Subject Area - Course Number:
COMPSCI 476
Cross-listing:
N/A
(See Note #1 below)

Course Title: (Limited to 65 characters)
Software Engineering
25-Character Abbreviation:
Software Engineering

Sponsor(s):
Athula Gunawardena, Lopamudra Mukherjee
Department(s):
Mathematical and Computer Sciences
College(s):
 FORMDROPDOWN

Consultation took place:
 FORMCHECKBOX

NA
 FORMCHECKBOX

Yes (list departments and attach consultation sheet)

Departments:      

Programs Affected:
Computer Science
Is paperwork complete for those programs? (Use "Form 2" for Catalog & Academic Report updates)

 FORMCHECKBOX

NA
 FORMCHECKBOX

Yes
 FORMCHECKBOX

will be at future meeting

Prerequisites:
MCS 231 or COMPSCI 223 or consent of instructor
Grade Basis:
 FORMCHECKBOX

Conventional Letter
 FORMCHECKBOX

S/NC or Pass/Fail

Course will be offered:
 FORMCHECKBOX

Part of Load
 FORMCHECKBOX

 Above Load

 FORMCHECKBOX

On Campus
 FORMCHECKBOX

Off Campus - Location      

College:
 FORMDROPDOWN

Dept/Area(s):
Math/Comp. Sciences
Instructor:
Athula Gunawardena, Lopamudra Mukherjee

Note: If the course is dual-listed, instructor must be a member of Grad Faculty.
Check if the Course is to Meet Any of the Following:

 FORMCHECKBOX
 Technological Literacy Requirement
 FORMCHECKBOX
 Writing Requirement

 FORMCHECKBOX
 Diversity

 FORMCHECKBOX
 General Education Option: FORMDROPDOWN

Note: For the Gen Ed option, the proposal should address how this course relates to specific core courses, meets the goals of General Education in providing breadth, and incorporates scholarship in the appropriate field relating to women and gender.

Credit/Contact Hours: (per semester)

Total lab hours:
0
Total lecture hours:
48

Number of credits:
3
Total contact hours:
48

Can course be taken more than once for credit? (Repeatability)

 FORMCHECKBOX
 No FORMCHECKBOX
 Yes If "Yes", answer the following questions:

No of times in major:
     
No of credits in major:
     

No of times in degree:
     
No of credits in degree:
     

Proposal Information: (Procedures for form #3)
Course justification:

This course contributes to the engineering topics component of the computer science curriculum, primarily in engineering science and engineering design. The course presents the principles of program design, correctness proofs and testing methodologies that are required in a professional environment in which the students will work.
Relationship to program assessment objectives:

The Assessment Committee in the Department of Mathematical and Computer Sciences has identified 5 universal objectives that address cognitive processes involved in learning math and computing topics. They are Analytical Reasoning, Conceptual/Foundational Understanding, Pattern Recognition, Problem Solving, and Synthesis. The proposed course will make contributions towards all five of these assessment objectives as follows.
Conceptual/Foundational Understanding is an integral part of the course since the students will study the methods and techniques of the software development process for the entire software lifecycle. Analytical Reasoning and Problem Solving are expected and tested throughout the course to achieve 4 key characteristics of a software system, namely, Reliability, Robustness, Maintainability, and Rapidity. The students will also be required to implement a structured set of activities for the software process, namely, specification, design, validation, and evolution. These activities vary depending on the organization and the type of system being developed. Abstract Pattern Recognition and Synthesis will play critical roles for defining the above activities for a given system and an organization.
Budgetary impact:
This course can be taught by several faculty members of the current computer science staff. It can be taught in McGraw 115 and Hyer 210 computer labs. There will be three new courses introduced for that major, and the department will cover these courses as part of its load. These new courses will require between three to four additional course sections being offered each year as part of the new major, and the half FTE required will be covered by a promised new half FTE from the College of Letters and Sciences. Computer laboratory space on campus is already sufficient to run this course. The Computer Science budget is being increased slightly to cover any new software required.
Course description: (50 word limit)

This course introduces concepts and techniques relevant to the production of large software systems. Students are taught a programming method based on the recognition and description of useful abstractions. Topics include: modularity; specification; data abstraction; object modeling; design patterns; and testing.
Course objectives and tentative course syllabus:
COMPSCI 476 Software Engineering

Course description:

This course introduces concepts and techniques relevant to the production of large software systems. Students are taught a programming method based on the recognition and description of useful abstractions. Topics include: modularity; specification; data abstraction; object modeling; design patterns; and testing.
Prerequisite:

MCS 231 or COMPSCI 223 or consent of the instructor
Required Text:
Fundamentals of Software Engineering, Prentice Hall, 2nd Edition by Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Course Objectives:

To complete the course, the student will:

1. Study the methods and techniques of the software development process for the entire software lifecycle.

2. Study the effects of the programming language and programming environment on the software development process.

3. Study the basic concepts of software management and organization.

4. Practice the techniques of software engineering by participating in a group software development project.

Course Outline:
1. Programming Tools (Editors, Compilers, Linkers, Make,..), Unix/Linux Programming Environment, Programming Languages (C , C++ and Java) (2 weeks)
2. Software Lifecycle Overview (1 week)
3. Software Requirements (1 week)
4. Software Design (2 weeks)
5. Software Implementation (3 weeks)
6. Programming Testing and Debugging (2 weeks)
7. Software Documentation and Maintenance (1 week)
8. User InterfacesManagement of Software Development (2 weeks)
Grading Policy:

Group Project* 30%
4 Individual Programming Assignments 20%
Midterm Exam 25%

Final Exam (Comprehensive) 25%

*All team members in a project team will receive the same project grade.
Final grade will be determined as follows. A: 94-100%, A-:90-93% B+ : 87-89%, B: 84-86%, B-: 80-83% C+ : 77-79%, C: 74-76%, C-: 70-73%

D+ : 67-69%, D: 64-66%, D-: 60-63%, F < 60%

COURSE REQUIREMENTS:

 1. Students are expected to attend all classes.

2. All assignments/programs are due at the BEGINNING of the class period on the assigned date. Late assignments or programs will be docked 20% per class day.

Religious Beliefs Accommodation:

Board of Regents policy states that students' sincerely held religious beliefs shall be reasonably accommodated with respect to scheduling all examinations and other academic requirements. Students must notify the instructor, within the first three weeks of the beginning classes of the specific days or dates on which they will request accommodation.

Absence For University Sponsored Events:

Students will not be academically penalized for missing class (exam) in order to participate in university sanctioned events. They will be provided an opportunity to make up any work that is missed.

Academic Misconduct:

 No form of academic misconduct will be tolerated in this course. Students engaged in any form of academic misconduct will experience the full force of the law as reported in UWS chapter 14.

Bibliography: (Key or essential references only. Normally the bibliography should be no more than one or two pages in length.)
Bruce Powel Douglass, Addison-Wesley, Real Time UML: Advances in the UML for Real-Time Systems, Addison-Wesley Professional, 3rd Edition, 2004. ISBN: 0321160762.
Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, Fundamentals of Software Engineering, Prentice Hall, 2nd Edition, 2002. ISBN 0133056996.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. ISBN: 0201633612.

Martin Fowler. Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley Professional, 1996. ISBN: 0201895420.

Martin Fowler, Kent Beck, John Brant and William Opdyke, Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-Wesley, 1999. ISBN: 0201485672.

Michael Jackson. Software Requirements and Specifications. Reading, MA: Addison-Wesley and ACM Press, 1995. ISBN: 0201877120.

The University of Wisconsin-Whitewater is dedicated to a safe, supportive and non-discriminatory learning environment. It is the responsibility of all undergraduate and graduate students to familiarize themselves with University policies regarding Special Accommodations, Academic Misconduct, Religious Beliefs Accommodation, Discrimination and Absence for University Sponsored Events (for details please refer to the Schedule of Classes; the “Rights and Responsibilities

HYPERLINK "../../../../Documents and Settings/gunawara/Documents and Settings/gunawara/www.uww.edu/Catalog/02-04/Legal/Legal1.html"
” section of the Undergraduate Catalog; the Academic Requirements and Policies and the Facilities and Services sections of the Graduate Catalog; and the “Student Academic Disciplinary Procedures (UWS Chapter 14); and the “Student Nonacademic Disciplinary Procedures" (UWS Chapter 17).
Revised 1/02
1
Revised 10/02
2 of 5

