Contact Information

John Ejnik
Associate Professor
Phone: (262) 472-1083
Location: Upham 253

Julia Rowehl
Academic Dept Assoc
Phone: (262) 472-1070
Location: Upham 220

Nano Technology

What is nano-technology? 

Research in nanotechnology (also called nanoscience) is extremely dynamic and active, involving chemists, physicists, biologists, and engineers working toward making, understanding, and applying materials on the length scale of 1-100 nanometers. This is extremely small: a 6 foot tall person is ~1.8 meters; a typical grain of sand may be between 0.1 and 2 millimeters (.0001 to .002 m); the diameter of a human hair is ~10-100 micrometers (.00001 to .0001 m); one nanometer is equivalent to one billionth of a meter (.000000001 m). At this length scale, the physics of many materials change along with their properties (e.g. electronic, thermal, and mechanical). In some cases, scientists can control the properties of nanomaterials if their size can be systematically confined to the nanoscale regime. 

Why study nano-technology?

The research, development, and application of nanomaterials is a multi-billion dollar industry. More importantly, nanoscience can potentially transform the lives of millions of people with potential advances in energy, medicine, environmental remediation, and reduced material cost. Every major research university and most chemical companies will involve components of nanotechnology research. By giving students at UW-Whitewater exposure to research in nanotechnology, they will become better positioned for success in this modern and rapidly changing field. 

Nano-technology and our life

Products incorporating nanostructured materials include stain and moisture-resistant clothing, nanocomposites making plastics and metals stronger and lighter, enhancements in solar cells and batteries for energy generation and storage, and devices that have enabled advancements in computing technologies for personal computers, smartphones, and appliances.

Employment opportunities

As many chemical companies and manufacturers move toward new products enabled by nanotechnology, many are interested in hiring individuals experienced in nanoscience. Likewise, nanoscience researchers must be highly versatile. Nanoscience research is highly interdisciplinary, incorporating chemistry, physics, and materials science into their work, with interactions alongside businesses and governmental entities.

Resources at UW-Whitewater

We have hired a nano-chemist, Dr. Steven Girard, in the rank of Assistant Professor. The Department of Physics is also hiring a nano-physicist. Dr. Eric Brown, Assistant Professor of Biological Sciences, is a nano-biologist. An annual nano-symposium is held in October every year.

Dr. Girard’s research focuses on the synthesis, characterization, and properties measurements of inorganic nanostructured materials. He is particularly interested in nanostructures comprised of cheap, non-toxic, and earth-abundant elements for renewable energy, including solar, battery, and thermoelectric applications. His publications and patents are listed as follows:



Publication List 

1.         Gelbstein, Y.; Davidow, J.; Girard, S. N.; Chung, D. Y.; Kanatzidis, M. G., Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance. Advanced Energy Materials, 2013, in press.

2.         Pokhrel, A.; Degregorio, Z. P.; Higgins, J. M.;Girard, S. N.; Jin, S., Vapor Phase Conversion Synthesis of Higher Manganese Silicide Nanowire Arrays.Chemistry of Materials, 2013, 25 (4), 632–638.

3.         Jaworski C. M.; Nielsen, M. D.; Wang, H.;Girard, S. N.; Cai, W.; Porter, W. D.; Kanatzidis, M. G.; Heremans, J. P., Valence-Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys.Physical Review B, 2013, 87, 045203.

4.         Girard, S. N.; Schmidt-Rohr, K.; Chasapis, T.C.; Hatzikraniotis, E.; Njegic, B.; Levin, E.M.; Rawal, A.; Paraskevopolous, K.M.; Kanatzidis, M.G., Analysis of Phase Separation in High Performance PbTe - PbS Thermoelectric Materials. Advanced Functional Materials, 2013 (23), 747-757.

5.         He, J.; Blum, I.; Wang, H.-Q.; Girard, S. N.; Doak, J.; Zhao, L.; Zheng, J.-C.; Casillas, G.; Wolverton, C.; Jose-Yacaman, M.; Seidman, D.; Kanatzidis, M. G.; Dravid, V. P., Morphology Control of Nanostructures: Na-doped PbTe-PbS System. Nano Letters, 2012 (12), 5979-5984.

6.         Girard, S. N.; Chasapis, T. C.; He, J.; Zhou, X.; Hatzikraniotis, E.; Uher, C.; Paraskevopoulos, K. M.; Dravid, V. P; Kanatzidis, M. G.; PbTe – PbSnS2Thermoelectric Composites: Low Lattice Thermal Conductivity From Large Microstructures.Energy and Environmental Science, 2012 (5), 8716-8725.

7.         He, J.;Girard, S. N.; Zheng, J. –C.; Zhao, L.; Kanatzidis, M. G.; Dravid, V. P.; Strong Phonon Scattering by Layer Structured PbSnS2in PbTe Based Thermoelectric Materials. Advanced Materials, 2012 22 (27), 13653.

8.         Chasapis, T. C.;Girard, S. N.;Hatzikraniotis, E.;Paraskevopoulos, K. M.; Kanatzidis, M. G., On the Study of PbTe-based Nanocomposite Thermoelectric Materials.Journal of Nano Research, 2012 (17), 165-174.

9.         Girard, S. N.; He, J.; Zhou, X.; Shoemaker, D.; Jaworski, C.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G.; High Performance Na-doped PbTe – PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures. Journal of the American Chemical Society, 2011 133 (41), 16588-16597.

10.       Wu, J.; He, J.; Han, M. K.; Sootsman, J. R.;Girard, S. N.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P., Electron-Beam Activated Thermal Sputtering of Thermoelectric Materials.Journal of Applied Physics, 2011 110 (4), 044325.

11.       He, J. Q.; Sootsman, J. R.; Xu, L. Q.;Girard, S. N.; Zheng, J. C.; Kanatzidis, M. G.; Dravid, V. P., Anomolous Electronic Transport in Dual-Nanostructured Lead Telluride.Journal of the American Chemical Society, 2011, 133 (23), 8786-8789.

12.       Stevens, K. R.*; Kantazidis, M. G.; Johnsen, S.;Girard, S. N.Investigation of the Thermoelectric Properties of Metal Chalcogenides with SnSe.Nanoscape, 2010 7 (1), 52-58. (*undergraduate researcher)

13.      Girard, S. N.; He, J.; Li, C.; Moses, S.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G., In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity.Nano Letters, 2010, 10 (8), 2825-2831.

14.       He, J.; Sootsman, J. R.;Girard, S. N.; Zheng, J.-C.; Wen, J.; Zhu, Y.; Kanatzidis, M. G.; Dravid, V. P., On the Origin of Increased Phonon Scattering in Nanostructured PbTe Based Thermoelectric Materials.Journal of the American Chemical Society, 2010, 132 (25), 8669-8675.

15.       Ni, J. E.; Case, E. D.; Khabir, K. N.; Stewart, R. C.; Wu, C.-I.; Hogan, T. P.; Timm, E. J.;Girard, S. N.; Kanatzidis, M. G., Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials.Materials Science and Engineering: B, 2010, 170 (1-3), 58-66.

16.       He, J.;Girard, S. N.; Kanatzidis, M. G.; Dravid, V. P., Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3Thermoelectric Materials.Advanced Functional Materials, 2010, 20 (5), 764-772.


17.       Kanatzidis, M. G. Zhang, Q.,Girard, S. N., and Biswas, K., Thermoelectric compositions comprising inclusions in a chalcogenide matrix; Patent WO/2011/037794, March 31 2011.

18.       Androulakis, J. A., Gao, Y.,Girard, S. N., Heremans, J. P., Jaworski, C. M.,  Kanatzidis, M. G., Thermoelectric figure of merit enhancement by modification of the electronic density of states; Patent WO/2011/112994, September 15 2011. 


College of Letters & Sciences
Laurentide Hall 4100
University of Wisconsin-Whitewater
800 W. Main Street
Whitewater, WI 53190-1790

Resources For

Faculty/Staff Contact

Office of the Dean
Rebecca Reichert
Phone: (262) 472-1621

Student Contact

Advising Office
Phone: (262) 472-1550

Follow Us

  UW-W CLS Meet Your Faculty blog