University of Wisconsin-Whitewater

Curriculum Proposal Form #3

New Course

Effective Term:
 FORMDROPDOWN

Subject Area - Course Number:
COMPSCI 320
Cross-listing:
     
(See Note #1 below)

Course Title: (Limited to 65 characters)
Concepts of Programming Languages
25-Character Abbreviation:
Program Language Concepts

Sponsor(s):
Zachary Oster and Cheng Thao
Department(s):
Mathematical and Computer Sciences
College(s):
 FORMDROPDOWN

Consultation took place:
 FORMCHECKBOX

NA
 FORMCHECKBOX

Yes (list departments and attach consultation sheet)

Departments:      

Programs Affected:
Computer Science majors (BA/BS general, BS comprehensive)
Is paperwork complete for those programs? (Use "Form 2" for Catalog & Academic Report updates)

 FORMCHECKBOX

NA
 FORMCHECKBOX

Yes
 FORMCHECKBOX

will be at future meeting

Prerequisites:
COMPSCI 223 and (COMPSCI 215 or MATH 280)
Grade Basis:
 FORMCHECKBOX

Conventional Letter
 FORMCHECKBOX

S/NC or Pass/Fail

Course will be offered:
 FORMCHECKBOX

Part of Load
 FORMCHECKBOX

 Above Load

 FORMCHECKBOX

On Campus
 FORMCHECKBOX

Off Campus - Location      

College:
 FORMDROPDOWN

Dept/Area(s):
Math and Computer Sciences
Instructor:
Zachary Oster or Cheng Thao

Note: If the course is dual-listed, instructor must be a member of Grad Faculty.
Check if the Course is to Meet Any of the Following:

 FORMCHECKBOX
 Technological Literacy Requirement
 FORMCHECKBOX
 Writing Requirement

 FORMCHECKBOX
 Diversity

 FORMCHECKBOX
 General Education Option: FORMDROPDOWN

Note: For the Gen Ed option, the proposal should address how this course relates to specific core courses, meets the goals of General Education in providing breadth, and incorporates scholarship in the appropriate field relating to women and gender.

Credit/Contact Hours: (per semester)

Total lab hours:
0
Total lecture hours:
48

Number of credits:
3
Total contact hours:
48

Can course be taken more than once for credit? (Repeatability)

 FORMCHECKBOX
 No FORMCHECKBOX
 Yes If "Yes", answer the following questions:

No of times in major:
     
No of credits in major:
     

No of times in degree:
     
No of credits in degree:
     

Proposal Information: (Procedures for form #3)
Course justification:

Hundreds of computer programming languages have been developed in the past several decades, each with its own purpose and niche within the industry. The continuing proliferation of programming and scripting languages ensures that working software developers must quickly learn how to understand and write code in many programming languages, including languages that do not follow the traditional structured or object-oriented paradigms. This course will teach students the basic theoretical concepts upon which all programming languages are built, which will help them quickly understand code written in unfamiliar languages and choose programming languages that best suit the tasks they are trying to accomplish. It will also expose students to increasingly important programming paradigms not covered elsewhere in our curriculum, such as functional programming and logic programming.
This course will be required for all students in the proposed comprehensive emphasis in the Computer Science major. It will also be an option for the Computer Science Fundamentals specialization within the current 36-credit Computer Science emphasis and for the Computer Science minor. Most students who take this course will do so in their third year: after completing the second-year prerequisites of COMPSCI 223 and either COMPSCI 215 or MATH 280, but before taking courses such as COMPSCI 451 or 476 where they can apply the skills from this course.

Relationship to program assessment objectives:

This course contributes toward the following student learning outcomes in the Computer Science assessment plan. Objective numbers refer to those in the “Course objectives and tentative course syllabus” section later in this document.

· “Each graduated student should have an understanding of the fundamental areas of Computer Science discipline includes fundamentals of computing, programming languages, […], design and implementation of programs.” (satisfied by objectives 1, 2, 4, and 5)
· “Each graduated student should be able to […] understand the design and performance requirements of software development process.” (satisfied by objective 6)
· “Each graduated student should engage in life-long learning and dynamics of the field, communicate effectively and demonstrate critical thinking independently and within team settings, able to work under pressure and strict deadlines.” (satisfied by objective 3)

Additionally, the vision statement in the Computer Science assessment plan expresses our desire to pursue accreditation for the Computer Science program from ABET. This course will directly fulfill the ABET Computing Accreditation Commission requirements for curricular coverage of “concepts of programming languages” and “an exposure to a variety of programming languages” in a Computer Science program.
The most similar current course at UW-Whitewater is Computer Languages and Compilers, COMPSCI 322. That course has not been offered for several years, but the Computer Science Program is redesigning it and plans to offer it in 2015. Although previous offerings of COMPSCI 322 did cover some of the topics to be covered in Concepts of Programming Languages, the redesigned COMPSCI 322 will focus on the mechanics of translating a program in a high-level language (e.g., Java or C++) into low-level machine code, as well as the software engineering techniques required to construct a working compiler that does so. In contrast, Concepts of Programming Languages will expose students to a diverse array of programming languages and paradigms, grounded in the theoretical foundations of programming languages.
Budgetary impact:

This course is expected to have minimal budgetary impacts, which we now discuss in detail.
· Staffing in the academic unit: Several current faculty members, including the sponsors, have the necessary background to teach this course. As a core course in the comprehensive emphasis, this course will be offered once per year, which will require redirection of existing teaching load or additional staffing to cover the course. Some one-time effort will be needed to install the tools needed to support the languages covered in the course on the Computer Science server, as well as ongoing effort to manage student accounts; this will likely be provided by the faculty or staff members responsible for managing the server and/or teaching this course.
· Academic unit library and service/supply budget: No impact to the academic unit’s library budget is expected. This course covers only programming languages for which compilers or interpreters are available under Free Software licenses (e.g., GNU GPL, BSD, or Apache licenses) or existing University-wide licenses, so minimal impacts to the service/supply budget are expected.
· Campus instructional resource units (i.e., iCIT): Because of the variety of programming languages to be covered, we will maintain and provide access to all editors, compilers, and interpreters used in this course on the Computer Science Program’s instructional server, which is administered by Computer Science faculty. The only impact of this course on iCIT should be the need to install the software to access the server (currently PuTTY) on all General Access lab computers and any computers in the classroom for this course. Other Computer Science courses have similar needs.
· Laboratory/studio facilities: No dedicated laboratory or studio facilities are needed. Students without their own computers can complete assignments in the General Access labs in Andersen 1008 and McGraw 19, as well as the Computer Science Hub in McGraw 122 (when completed).
· Classroom space: We expect to use existing classroom space scheduled by the Department of Mathematical and Computer Sciences. A computer-lab classroom is not required for this course.
· Library holdings and academic unit library allocation budget: This course’s end-of-term project will require students to research lesser-known programming languages. Current library holdings, along with resources available through Universal Borrowing and the large amount of freely available information about programming languages on the Internet, will suffice for this purpose. Any additional resources needed can be acquired within our current library allocation budget.

Course description: (50 word limit)

An exploration of the core concepts upon which all programming languages are built. Students will apply these concepts to write programs in several specialized programming languages, including functional and logic programming languages. Emphasis is placed upon evaluating the strengths and weaknesses of particular languages for various tasks.
If dual listed, list graduate level requirements for the following:

1. Content (e.g., What are additional presentation/project requirements?)

2. Intensity (e.g., How are the processes and standards of evaluation different for graduates and undergraduates?)

3. Self-Directed (e.g., How are research expectations differ for graduates and undergraduates?)

Course objectives and tentative course syllabus:

Students who complete this course will:
1. Understand the core theoretical concepts used to define and evaluate programming languages.
2. Correctly interpret programs according to the formal syntax and semantics of the language in which they are written.
3. Quickly and independently acquire a basic understanding of unfamiliar programming languages by recognizing similar constructs from previously learned languages and reading documentation.

4. Understand how to implement algorithms in functional and logic programming languages.

5. Describe the differences between implementations of the same algorithm in different languages.

6. Compare properties of various languages to determine which will be best to accomplish a task.

Tentative course syllabus:
COMPSCI 320 – Concepts of Programming Languages

(schedule to be determined)

Instructor
Dr. Zachary Oster

Email: osterz@uww.edu
Website: http://cs.uww.edu/~osterz/

Office: McGraw 108
Office phone: (262) 472-5006

Office hours: Monday 10 a.m.-12 p.m., Tuesday/Wednesday 1-2 p.m., Thursday 10-11 a.m., or email me to set up an appointment

Resources
Textbook (required): Concepts of Programming Languages, by Robert Sebesta. Pearson/Addison-Wesley, 2013. (available through Textbook Rental)

Desire2Learn (D2L): You will submit written assignments and you can access previous lecture notes on this course’s D2L site. Go to https://d2l.uww.edu and log in with your Net-ID and password.

CS Linux Server: You will be given an account on our department’s Linux server, which you will use to write, compile, and debug programs in a variety of programming languages. Access instructions will be posted on D2L.

Prerequisites
COMPSCI 223 and (COMPSCI 215 or MATH 280).
A student may not register for any course which is a prerequisite for another course in which credit has been earned unless prior departmental approval is obtained.

Description
An exploration of the core concepts upon which all programming languages are built. Students will apply these concepts to write programs in several specialized programming languages, including functional and logic programming languages. Emphasis is placed upon evaluating the strengths and weaknesses of particular languages for various tasks.
Objectives

· Understand the core theoretical concepts used to define and evaluate programming languages

· Correctly interpret programs according to the formal syntax and semantics of the language in which they are written

· Translate simple to moderately complex programs written in one language into another language

· Understand how to implement algorithms in functional and logic programming languages

· Describe the differences between implementations of the same algorithm in different languages

· Compare the properties and features of multiple languages to determine which one(s) will be most appropriate for a given software development task

Tentative Schedule

Week 1
Overview of concepts, programming language history, technology used in course

Week 2
Defining syntax: context-free grammars

Week 3
Defining semantics

Week 4
Lexical analysis and parsing

Week 5
Names, bindings, and scope issues

Week 6
Midterm exam 1 (covering Weeks 1-5); primitive data types

Week 7
Expressions and assignment statements

Week 8
Control structures for selection and repetition

Week 9
Subprograms and parameter passing

Week 10
Midterm exam 2 (covering Weeks 1-9): object-oriented programming topics

Week 11
Functional programming

Week 12
Handling concurrency

Week 13
Logic programming

Week 14
Commonalities and differences among programming paradigms

Week 15
Project presentations (mini-tutorials); review for final exam

Week 16
Final exam (comprehensive, emphasis on weeks 10-14)
Grading
Note: Policies are tentative and may change during the course.
Components
Assignments
40%
(4-5 written and/or programming assignments)

Project

10%
(choose a lesser-known language, implement several
algorithms in this language, present a short tutorial on it)

Midterm Exams
30%
(2 @ 15% each)

Final Exam

20%

Scale
A
93-100%
B-
80-83%

D+
67-70%

A-
90-93%

C+
77-80%

D
63-67%

B+
87-90%

C
73-77%

D-
60-63%

B
83-87%

C-
70-73%

F
< 60%

Letter grade breakpoints may be adjusted down (but not up) based on the class’s performance. I consider attendance, participation, effort, etc. when making decisions about borderline letter grades.

Other Policies

Attendance and Excused Absences

· You should attend every class meeting. New concepts in this class always build on older concepts. If you miss too many classes now, you may struggle later.

· If you need to miss class, check D2L for announcements, assignments, and lecture slides. You are responsible for material covered in class whether you attend or not.

Absences for the following reasons will be excused:

· Attending a university-sponsored event. Advance notice is appreciated.

· Sincerely held religious beliefs, as required by Board of Regents policy. Please contact me within the first three weeks of the course to tell me which dates you need to miss for religious observances.

· Extraordinary reasons beyond your control (e.g., illness, death in family).

Due Dates and Late Work

· Assignments are due at the start of class on the due date. Late assignments are accepted for up to 2 weeks after the due date, with a penalty of 20% per week (starting the day after the due date). Exceptions are given for excused absences.

Exams

· Tentative exam dates are given in the schedule above. Any changes in exam dates will be announced at least one week in advance.

· Exams cannot be “made up” unless your absence is excused. If you need to miss an exam, contact me before the exam if possible to schedule a make-up time.

Academic Misconduct
You must do your own work for all assignments, unless otherwise announced by the instructor. You may discuss ideas with and show your code to the instructor, tutors, and other students, but do not use others’ code in your work and do not write code for anyone else. Both are considered academic misconduct and result in penalties as described in UWS chapter 14.

Students with Disabilities

I aim to give every student an equal chance to succeed, regardless of physical ability.

If you have a disability and need accommodations to succeed in this course, please

meet with me during office hours or email me (osterz@uww.edu) as soon as possible.

Required Syllabus Statement
The University of Wisconsin-Whitewater is dedicated to a safe, supportive and non-discriminatory learning environment. It is the responsibility of all undergraduate and graduate students to familiarize themselves with University policies regarding Special Accommodations, Academic Misconduct, Religious Beliefs Accommodation, Discrimination and Absence for University Sponsored Events (for details please refer to the Schedule of Classes; the “

 HYPERLINK "http://www.uww.edu/Catalog/02-04/Legal/Legal1.html" Rights and Responsibilities

HYPERLINK "../../../../AppData/www.uww.edu/Catalog/02-04/Legal/Legal1.html"
” section of the Undergraduate Catalog; the Academic Requirements and Policies and the Facilities and Services sections of the Graduate Catalog; and the “Student Academic Disciplinary Procedures (UWS Chapter 14); and the “Student Nonacademic Disciplinary Procedures" (UWS Chapter 17).
Bibliography: (Key or essential references only. Normally the bibliography should be no more than one or two pages in length.)
Mordechai Ben-Ari. Understanding Programming Languages. Wiley, 1996.
Maribel Fernández. Programming Languages and Operational Semantics. Springer, 2014.

Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts, 3rd ed. Wiley, 1998.
Robert W. Sebesta. Concepts of Programming Languages, 10th ed. Pearson/Addison-Wesley, 2013.

Peter van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. MIT Press, 2004.
Revised 1/02
1
Revised 10/02
2 of 6

